skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Piantanida, Luca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract DNA has emerged as a promising material to address growing data storage demands. We recently demonstrated a structure-based DNA data storage approach where DNA probes are spatially oriented on the surface of DNA origami and decoded using DNA-PAINT. In this approach, larger origami structures could improve the efficiency of reading and writing data. However, larger origami require long single-stranded DNA scaffolds that are not commonly available. Here, we report the engineering of a novel longer DNA scaffold designed to produce a larger rectangle origami needed to expand the origami-based digital nucleic acid memory (dNAM) approach. We confirmed that this scaffold self-assembled into the correct origami platform and correctly positioned DNA data strands using atomic force microscopy and DNA-PAINT super-resolution microscopy. This larger structure enables a 67% increase in the number of data points per origami and will support efforts to efficiently scale up origami-based dNAM. 
    more » « less
  2. DNA-PAINT applications are guiding new advancements in a virtuous cycle that benefits bioimaging and nanometrology. 
    more » « less
    Free, publicly-accessible full text available June 12, 2026
  3. Abstract DNA is a compelling alternative to non-volatile information storage technologies due to its information density, stability, and energy efficiency. Previous studies have used artificially synthesized DNA to store data and automated next-generation sequencing to read it back. Here, we report digital Nucleic Acid Memory (dNAM) for applications that require a limited amount of data to have high information density, redundancy, and copy number. In dNAM, data is encoded by selecting combinations of single-stranded DNA with (1) or without (0) docking-site domains. When self-assembled with scaffold DNA, staple strands form DNA origami breadboards. Information encoded into the breadboards is read by monitoring the binding of fluorescent imager probes using DNA-PAINT super-resolution microscopy. To enhance data retention, a multi-layer error correction scheme that combines fountain and bi-level parity codes is used. As a prototype, fifteen origami encoded with ‘Data is in our DNA!\n’ are analyzed. Each origami encodes unique data-droplet, index, orientation, and error-correction information. The error-correction algorithms fully recover the message when individual docking sites, or entire origami, are missing. Unlike other approaches to DNA-based data storage, reading dNAM does not require sequencing. As such, it offers an additional path to explore the advantages and disadvantages of DNA as an emerging memory material. 
    more » « less